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ABSTRACT: Tropical cyclone tornadoes (TCTORs) are a hazard to life and property during landfalling tropical cyclones
(TCs). The threat is often spread over a wide area within the TC envelope and must be continually evaluated as the TC
moves inland and dissipates. To anticipate the risk of TCTORs, forecasters may use high-resolution, rapidly updating
model analyses and short-range forecasts such as the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR),
and an ingredients-based approach similar to that used for forecasting continental midlatitude tornadoes. Though RAP
and HRRR errors have been identified in typical midlatitude convective environments, this study evaluates the perfor-
mance of the RAP and the HRRR within the TC envelope, with particular attention given to sounding-derived parameters
previously identified as useful for TCTOR forecasting. A sample of 1730 observed upper-air soundings is sourced from
13 TCs that made landfall along the U.S. coastline between 2017 and 2019. The observed soundings are paired with their cor-
responding model gridpoint soundings from the RAP analysis, RAP 12-h forecast, and HRRR 12-h forecast. Model errors
are calculated for both the raw sounding variables of temperature, dewpoint, and wind speed, as well as for the selected
sounding-derived parameters. Results show a moist bias that worsens with height across all model runs. There are also statisti-
cally significant underpredictions in stability-related parameters such as convective available potential energy (CAPE) and
kinematic parameters such as vertical wind shear.

KEYWORDS: Atmosphere; North America; Tornadoes; Tropical cyclones; Model errors;
Model evaluation/performance

1. Introduction

Tropical cyclone tornadoes (TCTORs) present a critical pub-
lic hazard and forecasting challenge within landfalling and rem-
nant tropical cyclones (TCs). TCTORs are distributed over
wide spatial scales and temporal windows within the TC enve-
lope (e.g., Edwards 2012), and the evolving tornado threat must
be monitored as the TC approaches the coast, moves inland,
and dissipates. To track current conditions or anticipated short-
term changes in mesoscale features and variables critical to
midlatitude, supercellular tornado production, forecasters often
rely on models such as the Rapid Refresh (RAP) and High-
Resolution Rapid Refresh (HRRR), which have high spatial
and temporal resolution and frequently assimilate new environ-
mental data (Smith et al. 2008; Benjamin et al. 2016).

As described below, many studies have examined observa-
tions and distributions of TCTORs, the characteristics of their
near-cell environments, and the characteristics of the broad
TC environment. A few have examined RAP and HRRR
model performance in continental environments, but not
within tropical cyclone envelopes as was recommended as fu-
ture work by Edwards (2012). Thus, we use observed and
model atmospheric soundings to evaluate the representation

of TCTOR-related variables in the widely used RAP and
HRRR forecast models specifically within TC envelopes. The
existing literature (described in section 2) on TCTORs and
RAP and HRRR model errors in continental environments
motivate the following research questions:

1) What are the height-dependent model biases in tempera-
ture, dewpoint, and winds in the RAP analysis, and 12-h
RAP and HRRR forecasts relative to radiosonde obser-
vations within a TC envelope?

2) How does model performance vary as a function of dis-
tance/azimuth from the TC center, TC intensity, and time
relative to TC landfall?

3) How do model biases translate to errors in sounding-derived
parameters specifically related to TCTOR forecasting?

To address these questions, this study evaluates model biases
in the RAP analysis, and RAP and HRRR forecasts, within the
envelopes of TCs that made landfall during the 2017–19Atlantic
hurricane seasons. Errors in vertical profiles of temperature,
dewpoint, and wind, as well as errors in sounding-derived
parameters used in tornado forecasting, are examined spatially
and temporally with respect to the TC. This model verification
is the foundation of an ongoing larger effort to improve the
TCTOR forecasting and warning process by better understand-
ing differences in the near-cell environments of tornadic and
nontornadic cells within TC rainbands.

2. Background

While TCTORs comprise less than 10% of overall U.S.
tornado activity, they account for ;10%–25% of the overall

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/WAF-D-22-
0117.s1.

Corresponding author: Christopher J. Nowotarski, cjnowotarski@
tamu.edu

DOI: 10.1175/WAF-D-22-0117.1

Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

M A CDONALD AND NOWOTAR S K I 655MAY 2023

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/30/24 02:08 PM UTC

https://orcid.org/0000-0003-4739-7810
https://orcid.org/0000-0003-4739-7810
https://doi.org/10.1175/WAF-D-22-0117.s1
https://doi.org/10.1175/WAF-D-22-0117.s1
mailto:cjnowotarski@tamu.edu
mailto:cjnowotarski@tamu.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


tornado activity in each state bordering the Gulf and Atlantic
coasts from Louisiana to Maryland (Edwards 2010; Schultz
and Cecil 2009). From 1995 to 2021 1746 TCTORs occurred
within the contiguous United States, resulting in at least 29
fatalities and 403 injuries (Edwards and Mosier 2022). These
tornadoes are typically concentrated within 500 km of the
coastline, but the threat of TCTORs can persist much farther
inland and many days after the TC landfall (Edwards and
Mosier 2022). Hurricane Ivan (2004) provided an extreme ex-
ample of this, spawning 118 tornadoes in a multiday outbreak
that occurred in three distinct geographical clusters along a
path from the Gulf Coast of Florida to Maryland (Edwards
2012). Even in less extreme cases, however, the risk of
TCTORs remains elevated for a substantial period, with the
majority of TCTORs from 1950 to 2007 occurring between
12 h prior to landfall and 48 h after landfall (Schultz and Cecil
2009).

TCTORs most commonly occur in the sector from north to
southeast of the TC center with the greatest frequency in the
northeast quadrant (Edwards 2010; Edwards and Mosier 2022).
TCTOR reports tend to shift toward the southeast as the TC
weakens because this quadrant usually moves over land during
the remnant phase and typically contains higher values of
CAPE (Edwards 2012; McCaul 1991). Motion-relative quad-
rants are also often used to describe TCTOR occurrence; how-
ever, the distinctions between the two distribution patterns are
minimal, outside unusual southward TC translation compo-
nents (Schultz and Cecil 2009; Edwards and Mosier 2022).
Schenkel et al. (2020) investigated TCTOR occurrence relative
to the background deep-layer shear vector, finding the majority
of TCTORs occur in the downshear-left quadrant of TCs,
which often overlaps with the northeast or right-front quadrant
for typical synoptic patterns and TC motions (though excep-
tions exist). Most reports fall within 100–500 km of the TC cen-
ter (Edwards 2012). Thus, even in highly destructive TCs with
large hurricane-force wind radii, TCTORs can increase local
risk because they occur outside of the area that prepared for
hurricane-force winds. Hence, forecasters must closely monitor
the favorability of the environment for TCTOR production at
the regional scale.

As in nontropical environments, the most prevalent tornadic
storm modes within TCs are supercellular. The three most
common tornadic storm modes in TCs are: supercells in clus-
ters, discrete right-moving supercells, and supercells embed-
ded in QLCSs. These account for around 80% of TCTOR
events (Edwards et al. 2012); however, supercells within TCs
are generally shallower and narrower, with weaker mesocy-
clones than those of their nontropical counterparts (Spratt
et al. 1997; Edwards 2012). TCTORs also tend to be weaker
than nontropical tornadoes. Edwards and Mosier (2022) found
that 95.4% of TCTORs from 1995 to 2021 were classified as
weak (F/EF0–1), while just 87.4% of overall U.S. tornadoes fit
this category. Stronger tornadoes (F/EF21) occurred only
6.3% of the time in TCs, compared to 11.2% of overall U.S.
tornadoes. The diurnal distribution of TCTORs varies from
non-TC tornadoes. Most TCTORs occur between 0900 and
1800 local time, with a distinct peak between 1500 and 1800
local time; this is earlier than the early evening maximum in

non-TC tornado frequency (McCaul 1991). Regardless, noc-
turnal tornadoes are more common in TCs than in the overall
U.S. tornado record (Schultz and Cecil 2009).

Systematic differences between TC and non-TC tornado
environments emerge in moisture, instability, and shear char-
acteristics of the near-cell environment of their parent cells.
Moisture is more abundant throughout the column in the TC en-
vironment, as demonstrated by higher values of precipitable wa-
ter compared to those in non-TC atmospheric profiles (Edwards
et al. 2012). CAPE values, on the other hand, tend to be lower
throughout the TC envelope than in typical midlatitude convec-
tive environments (McCaul 1991). In a study of non-TC versus
TC supercell tornadoes from 2003 to 2011, non-TC tornado envi-
ronments had a median MLCAPE of 1240 J kg21 as opposed to
547 J kg21 in TCTOR environments (Edwards et al. 2012).
CAPE is largest in the outer regions of the TC on the right side
of the track, especially toward the right-rear quadrant (generally
the southeast quadrant), and CAPE decreases inward toward the
TC center to values less than 400 J kg21 (McCaul 1991). Surface-
based CAPE (SBCAPE) can be enhanced beneath cloud-free
slots within the TC envelope that develop through midtropo-
spheric drying (Curtis 2004). However, the warm-core nature of
TCs produces weak thermal lapse rates aloft that tend to cap the
vertical extent of the buoyancy at just a few kilometers above
ground level, around the 600-mb (1 mb5 1 hPa) level (Edwards
2012; McCaul 1991).

Low-level vertical wind shear is generally stronger in TC
environments than in non-TC environments (McCaul 1991).
Moreover, low-level shear is stronger and tornado production
is more likely in more intense TCs (Verbout et al. 2007) and
larger TCs (Paredes et al. 2021). Vertical shear decreases with
radial distance from the TC center, and the strongest shear
and largest storm-relative helicity (SRH) values occur in the
northeast or right-front quadrant (McCaul 1991) or downshear
side of the TC (Molinari and Vollaro 2010). In these locations,
and particularly the downshear left quadrant, the background
synoptic-scale flow in the middle and upper troposphere most
often overlaps favorably with the TC wind structure to en-
hance deep-layer shear and support wind profiles that veer
continuously with height (Schenkel et al. 2020). As TCs move
farther into the midlatitudes after landfall, they often encoun-
ter stronger westerly flow aloft. This can maintain and even
enhance vertical wind shear with time when coupled with fric-
tional slowing of the wind near the surface. Helicity parame-
ters also tend to increase with time after landfall (Gentry 1983;
McCaul 1991).

Despite differences in the distributions of meteorological
variables between the two environment types, the traditional
ingredients-based approach to non-TC tornado forecasting is
also used in TCTOR forecasting. Since low-level moisture is
abundant within the TC envelope, TCTOR forecasting relies
heavily on identifying regions of favorable instability and
shear in proximity to mesoscale boundaries or other lifting
mechanisms. Identifying short-term trends, recent or fore-
casted, in such variables is crucial when diagnosing TCTOR
potential (Edwards 2012). Forecasters also examine mid and
upper-level features, such as the superpositioning of back-
ground flow to produce wind profiles conducive to TCTOR
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production, or the progression of midtropospheric drying visi-
ble on 700- or 500-mb relative humidity maps that could be an
early sign of a TCTOR outbreak (Schenkel et al. 2020; Curtis
2004). Nowotarski et al. (2021) showed that, among kinematic
parameters, 0–6-km shear and 0–1-km SRH best discrimi-
nated between tornadic and nontornadic cells within Hurri-
cane Harvey. Mean values of 100-mb MLCAPE, 0–3-km
lapse rate, and the significant tornado parameter (STP) were
greater for tornadic versus nontornadic environments in their
study. These findings align with those of Edwards et al.
(2012), who showed larger values of MLCAPE, 0–6-km shear,
and STP in the near-cell environments of strong TCTORs
(EF2 and EF3) than in the near-cell environments of weak
TCTORs (EF0 and EF1). Additionally, Davies (2006) found
that the 0–1-km energy helicity index (EHI), which combines
parcel CAPE and 0–1-km SRH into a single parameter, was
notably greater in cases with TCTORs rated EF2 or higher
than in nontornadic environments.

To evaluate these rapidly evolving conditions on small spa-
tial scales within the TC envelope, forecasters employ high-
resolution models such as the Rapid Refresh model, or RAP
(Benjamin et al. 2016). The RAP model domain covers the en-
tire North American region at 13-km horizontal resolution and
at 51 vertical levels. It assimilates radiosonde data as well as ob-
servations from surface weather stations, ships, aircraft, radars,
and satellites. The RAP model analysis is issued every hour,
and the RAP forecast is issued every 3 h. Each forecast is for at
least 18 h with hourly time resolution (Benjamin et al. 2016).

The RAP analysis forms the basis of the Real-Time Mesoscale
Analysis (RTMA), produced hourly by the National Centers
for Environmental Prediction (NCEP), and the hourly
Storm Prediction Center (SPC) mesoanalysis fields, both of
which are important tools for now-casting (De Pondeca et al.
2011; Storm Prediction Center 2016). The RAP analysis also
provides the initial and lateral boundary conditions for the
3-km High-Resolution Rapid Refresh (HRRR) model, which
then assimilates radar data before generating hourly convection-
allowing forecast grids that are used in short-term severe weather
forecasting (Evans et al. 2018). The HRRR forecasts are gen-
erally preferred over RAP forecasts in complex convective
environments due to their hourly updates and superior spa-
tial resolution.

Evans et al. (2018) calculated model biases for both RAP
and HRRR analyses and 11-h forecasts in environments condu-
cive to convection, as defined by SPC day 1 convective outlooks
issued during May 2017. In the lowest 5 km of the atmosphere,
they found small biases in temperature (,;0.258C) in both
of the analyses (Fig. 1a). Both of the 11-h forecast temper-
ature profiles were consistently warm-biased from 0 to
5 km, with the largest warm bias in both models occurring
near the surface and the RAP warm bias slightly greater
than that of the HRRR above the surface layer (Fig. 1b).
Surface dewpoints were slightly dry biased across both
models and lead times. However, there was a pronounced
moist bias above the surface level in both models that
worsened with increasing altitude and lead time, exceeding

FIG. 1. (a) Vertical profiles of sample-mean bias (8C; dashed lines; defined as model minus observations) and mean
absolute error (MAE; 8C; solid lines) between 0 and 5 km AGL for RAP and HRRR 0-h temperature (red and pink
lines, respectively) and dewpoint temperature (dark blue and light blue lines, respectively) analyses. Shading depicts
the interquartile ranges of the error distributions for each variable and model. Solid red and blue dots indicate vertical
levels at which the temperature and dewpoint temperature error distributions, respectively, between the RAP and
HRRR are significantly different to at least 95% confidence, as assessed using the two-tailed, nonparametric
Wilcoxon signed-rank test. The number of observations contributing to each sample is depicted above each
panel. (b) As in (a), but for 11-h forecasts. [Figure from Fig. 4 and caption from Fig. 3 in Evans et al. (2018).]
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38C in the RAP 11-h dewpoint forecast around an altitude
of 5 km (Fig. 1b).

Evans et al. (2018) also examined sounding-derived param-
eter biases. MLCAPE was overestimated in both the analyses
and 11-h forecasts due to the moist bias present above the sur-
face, but surface-based (SB) and most-unstable (MU) CAPE
were underpredicted due to the surface dry bias. Laflin (2013)
performed similar verification of the RAP model in springtime
preconvective environments, although restricted to the central
and northern Great Plains. They found underestimations in
SBCAPE and MUCAPE for both 12- and 6-h model forecasts,
which likely resulted from large dry model biases in the near-
surface layer of the model. However, these dry biases extended
farther above the surface than in the findings of Evans et al.
(2018), so MLCAPE was also found to be underpredicted in
the Laflin (2013) study. Fovell and Gallagher (2020) analyzed
the representation in the contiguous United States of the lowest
1 km of the atmosphere in the HRRRmodel. They found small
near-surface temperature biases that depended on station ele-
vation. They also found small wind speed biases at the analysis
time that became increasingly positive throughout the 24-h
forecast period. All of these verification studies focused on con-
tinental conditions, such that it is unclear if these errors also ex-
ist within the envelope of landfalling TCs where moisture is
generally much more prevalent, and the TC circulation itself re-
sults in atypical wind profiles. Thus, this study aims to quantify
RAP analysis and RAP and HRRR forecast errors specifically
within the context of the TC envelope and TCTOR forecasting
using a similar methodology to Evans et al. (2018).

3. Data and methods

a. Tropical cyclone data

We analyze the environments of TCs from the 2017 to 2019
Atlantic hurricane seasons. Only the TCs that made landfall
along the coastline of the contiguous United States are used o

ensure adequate observed radiosonde data to compare to the
model profiles. This yields 5 TCs from the 2017 season, 4 from
2018, and 4 from 2019, for a total of 13 TCs. A summary of the
names, landfall dates, maximum intensities, and categories at
peak intensity of these TCs is presented in Table 1, along with
the number of TCTORs associated with each TC or its rem-
nants. These data come from the publicly available official
Tropical Cyclone Reports released by the National Hurricane
Center, except for the TCTOR frequency, which is taken from
the Edwards TCTOR database (Edwards 2010). Four of the
TCs in this study have fewer than five TCTORs attributed to
them. These TCs are still relevant because the purpose of this
study is not to capture specific TCTOR cases or analyze near-
cell environments. Rather, we broadly examine the distribu-
tions of environmental variables and model errors critical to
TCTOR production, both spatially within the TC envelope
and temporally as the TC moves inland and weakens.

TC track data are acquired from the Atlantic HURDAT2 da-
taset, which comprises poststorm analyzed TC best track data
(Landsea and Franklin 2013). These are documented observa-
tions of the TC every 6 h at 0000, 0600, 1200, and 1800 UTC.
An extra data point is often recorded near the time of landfall
or at the TC’s maximum intensity if these points do not coincide
with a standard 6-hourly time point. The information collected
at each point includes the date and time, the latitude and longi-
tude of the TC center at that time, the mean sea level pressure
at the TC center, and the maximum sustained wind (intensity)
of the TC in knots. For this research, any points in the TC track
data not occurring at 0000, 0600, 1200, or 1800 UTC are dis-
carded, and the latitudes, longitudes, pressures, and intensities
from the remaining 6-hourly points are interpolated linearly to
yield hourly track data (Fig. 2).

b. Observed soundings

The TC data are used alongside a National Weather Ser-
vice AWIPS2 dataset containing the latitudes, longitudes, and
elevations of upper-air observing sites, hereafter “stations.”

TABLE 1. The names, landfall dates, maximum intensities, and Saffir–Simpson categories at maximum intensity of the TCs used in
this study, and the number of TCTORs associated with each. The minimum number of sounding pairs (observed sounding with its
corresponding model sounding) analyzed for each storm is also presented. For all TCs except Dorian, this is the number of HRRR
12-h forecast sounding pairs; for Dorian it is the number of RAP 12-h forecast sounding pairs.

TC name
Mainland U.S.
landfall date No. of TCTORs Peak intensity (kt)

Category at peak
intensity

Min No. of
sounding pairs

analyzed

Cindy 22 Jun 2017 18 50 TS 97
Emily 31 Jul 2017 1 50 TS 52
Harvey 25 Aug 2017 52 115 4 261
Irma 10 Sep 2017 28 155 5 104
Nate 8 Oct 2017 21 80 1 102
Alberto 29 May 2018 4 55 TS 163
Florence 14 Sep 2018 44 130 4 161
Gordon 4 Sep 2018 7 60 TS 117
Michael 10 Oct 2018 16 140 5 118
Barry 13 Jul 2019 1 65 1 195
Dorian 6 Sep 2019 25 160 5 162
Imelda 17 Sep 2019 2 40 TS 45
Nestor 19 Oct 2019 6 50 TS 27
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At each hourly time step along each TC track, the distance
from the TC center to all the stations in the dataset is computed
with the Haversine distance formula (Sinnott 1984), which ac-
counts for the curvature of Earth over long spatial scales in its
calculation of the distance between two locations. All stations
falling within a radius of 800 km from the TC center at that
given time are considered in this study and eligible soundings
from these stations are collected (University of Wyoming 2020).
This choice is consistent with the 800-km radius used by
McCaul (1991) in their assessment of the spatial distributions of
TCTOR-related environmental variables, and few TCTORs oc-
cur outside this radius (Edwards and Mosier 2022); however,
the radius of influence of individual TCs may vary considerably.

Any available special soundings are collected in addition to
the standard soundings at 0000 and 1200 UTC. Most of the
soundings are obtained from National Weather Service forecast
offices located in the United States, but data from upper-air ob-
serving stations in Mexico and the Caribbean are included as
permitted by the 800-km radius criterion and the domains of
the RAP and HRRRmodels. Each observed sounding contains
pressure, height, temperature, dewpoint, and wind speed and
direction, which are interpolated to 100-m intervals from 0 to
16 km above ground level (AGL).

c. Model soundings

The NCEP RAP model with 13-km horizontal grid spacing
and the HRRR model with 3-km horizontal grid spacing are
compared in this study. For each observed sounding, the RAP
analysis vertical profile from the same time and the nearest
grid point to the station is selected from the analysis grid
downloaded from the National Centers for Environmental

Information (NCEI) model data archive (NOAA/National
Centers for Environmental Information 2020). Then, the cor-
responding 12-h RAP and HRRR forecasts valid at the
sounding observation time are downloaded, and the vertical
profile from the nearest model grid point to the station is se-
lected. These analysis and forecast soundings contain pres-
sure, height, temperature, relative humidity [converted to
dewpoint via NCAR Command Language (NCL) software],
and wind data and are interpolated in the same way as the ob-
served soundings. RAP version (v) 4 and HRRRv3 were im-
plemented at NCEP on 12 July 2018, so the model soundings
from the beginning of this study come from RAPv3 and
HRRRv2 while the remainder come from RAPv4 and
HRRRv3 (NOAA/Global Systems Laboratory 2020). While
we combine different model versions in our presentation of
results, raw model variable errors are also computed sepa-
rately for each version (supplemental Fig. 1 in the online
supplemental material). The RAP analysis and forecasts are
missing from 0300 UTC 5 September to 1200 UTC 7 September
2019, which limits the model data and the number of sounding
pairs analyzed during Hurricane Dorian.

d. Sounding-derived parameters

The Sounding and Hodograph Analysis and Research Pro-
gram in Python (SHARPpy; Blumberg et al. 2017) software is
used to compute sounding-derived parameters for the ob-
served, model analysis, and model forecast soundings. Though
we considered a variety of common sounding-derived param-
eters available in SHARPpy, we focus our analysis below on
the following variables. Bulk wind differences (representing
vertical wind shear, and hereafter used interchangeably with

FIG. 2. The tracks of the 13 TCs used in this study, along with the locations of all available upper-air
observing stations.
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“shear”) and lapse rates are calculated over various layers,
along with SRH values. Without observed convective cell mo-
tions for each sounding pair, we calculate SRH using a sounding-
derived right-moving supercell motion estimate (Bunkers et al.
2000) modified with the parcel-based approach consistent with
Bunkers et al. (2014). Though convective cell motion is likely
to deviate from this estimate to varying degrees in the TC
envelope, this approach recognizes the often shallow top of
TCTOR parent cells. CAPE, convective inhibition (CINH),
lifted condensation level (LCL), level of free convection
(LFC), and lifted index (LI) are determined for the surface-
based, mixed-layer, and most-unstable parcels. The mixed-
layer parcel has the averaged properties of the lowest 100 mb
of the sounding, and the most-unstable parcel is the parcel
with the highest equivalent potential temperature in the lowest
300 mb of the sounding. We also examine both the original
fixed-layer STP (Thompson et al. 2003) and the CINH-
adjusted effective layer STP (Thompson et al. 2012). All
sounding-derived parameters are computed from the vertically
interpolated soundings to remove the potential influence of
the different native vertical levels of the datasets.

e. Data analysis methods

Quality control of the eligible model/observation sounding
pairs includes removal of soundings with deep contiguous
layers of missing data or clearly erroneous wind data, observa-
tions occurring outside of a particular model domain, or miss-
ing analysis/forecast data. This results in 1730 corresponding
RAP analysis profiles, 1681 RAP 12-h forecast profiles, and
1647 HRRR 12-h forecast profiles. For each sounding pair,
model errors are calculated for all raw sounding variables and
sounding-derived parameters as the model value minus the
observed value, such that a positive model error represents an
overprediction of that quantity by the model and a negative
model error represents an underprediction.

4. Results

a. Errors in raw sounding variables

Mean error (i.e., bias) and mean absolute error profiles of
temperature, dewpoint, and wind speed are generated for the
RAP analysis, RAP 12-h forecast, and HRRR 12-h forecast.
The mean error profiles are calculated by subtracting each
observed value from its corresponding model value at each
interpolated height, then averaging across all available
sounding pairs at that height. The two-tailed, nonparametric
Wilcoxon signed-rank test (Wilcoxon 1945; Wilks 2011) is
performed at each height of each mean error profile to test
whether the median errors at each height are significantly
different from zero at the 95% confidence level.

Mean temperature errors do not exceed a magnitude of
0.48C at any height in any of the three error profiles (Fig. 3a).
The RAP analysis (20.368C), RAP 12-h forecast (20.168C),
and HRRR 12-h forecast (20.128C) all have cool biases at the
surface. This surface cool bias is largest in magnitude for the
RAP analysis, remains negative throughout much of the col-
umn up to about 9 km before changing to a warm bias in the

upper troposphere. The HRRR 12-h forecast has a low-level
warm bias starting just above the surface and extending up to
4 km; this changes to a cool bias between 4 and 11 km and
then back to a warm bias above 11 km. The temperature er-
rors in the RAP 12-h forecast are the largest of any of the
three profiles within the troposphere. The surface cool bias in
the RAP 12-h forecast persists up to 2 km and is followed by
a warm bias from 2 to 5.5 km and a strong cool bias above
that through the remainder of the troposphere. These results
differ from those presented by Evans et al. (2018; Fig. 1b);
both the RAP and HRRR forecasts in continental convective
environments in their study were continuously warm biased in
the 0–5-km layer.

Profiles of the mean absolute temperature errors (Fig. 3b) re-
veal the smallest mean absolute temperature errors in the RAP
analysis. The RAP 12-h forecast exhibits the greatest mean ab-
solute temperature error throughout the profile, and the magni-
tudes of HRRR 12-h forecast absolute temperature errors fall
between those of the RAP 12-h forecast and RAP analysis.

The mean dewpoint errors (Fig. 3c) have larger magnitudes
than the temperature errors and increase with height. The RAP
analysis and HRRR 12-h forecasts have surface dry biases, but
the HRRR bias is larger with a magnitude of nearly 0.58C.
Above the surface, the RAP analysis and both forecasts have
moist biases that worsen with height, maximizing at nearly 48C
between 12 and 13 km. The difference between the RAP and
HRRR 12-h dewpoint forecasts is significant at fewer height
levels than for the mean temperature errors. The mean absolute
dewpoint errors (Fig. 3d) are up to 18C greater in the forecasts
than in the RAP analysis, although no clear distinction exists
between the two forecasts, similar to the mean absolute temper-
ature error profiles (Fig. 3b).

The error profiles for the continental convective environments
in Evans et al. (2018) were truncated at an altitude of 5 km, and
our analysis shows a similar bias pattern below that height within
TCs. In their study, both the RAP and HRRR forecasts as well
as the RAP analysis had surface dry biases that quickly transi-
tioned to moist biases increasing with height. The moist bias in
the RAP analysis reached just over 28C at 5 km (Fig. 1a),
while the moist biases in the forecasts increased more rap-
idly to around 38C at the same height (Fig. 1b). In this study
of TC environments, the dewpoint biases are smaller within
the lowest 5 km and the behavior of the forecasts and the
RAP analysis is more similar; all three biases have a magnitude
of around 18C at 5 km (Fig. 3c). When contrasted with the con-
tinental results in Fig. 1, the results presented in Fig. 3c suggest
the models predict moisture better within TC envelopes than in
continental environments, at least below 5 km AGL.

The RAP analysis and both forecasts overpredict shallow,
near-surface wind speeds (Fig. 3e). The largest near-surface
overpredictions, exceeding 2.5 kt (1 kt ’ 0.51 m s21), occur in
the HRRR 12-h forecast. Above 1 km, all three error profiles
transition to an underprediction of wind speed, with the larg-
est underpredictions in the RAP 12-h forecast. The smallest
underpredictions, never exceeding a magnitude of 0.75 kt, oc-
cur in the HRRR 12-h forecast with some layers having errors
that are insignificant at the 95% confidence level. Despite these
small biases in the HRRR 12-h forecast, the mean absolute
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FIG. 3. Vertical profiles of mean error and mean absolute error for (a),(b) temperature; (c),(d) dewpoint;
and (e),(f) wind speed from 0 to 14 km AGL for the RAP analysis, RAP 12-h forecast, and HRRR 12-h
forecast. Solid black, red, and blue dots at the left edge of (a), (c), and (e) denote the levels at which the
mean errors are significant to at least 95% confidence. Purple dots at the left edge of those panels
denote the levels at which the RAP and HRRR 12-h forecast errors are significantly different from
each other. The number of observed–model sounding pairs contributing to each error profile are as
follows: RAP analysis}1730, RAP 12-h forecast}1681, HRRR 12-h forecast}1647.
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error profiles (Fig. 3f) reveal that RAP analysis absolute wind
speed errors tend to be smaller than those of both forecasts by
1–2.5 kt. Positive wind speed biases at the surface and negative
wind speed biases aloft are expected to result in underpredic-
tions of vertical wind shear quantities for layers based at the
surface; shear will be explored along with other sounding-
derived parameters in section 4b below.

Comparison of the RAP analysis, RAP 12-h forecast, and
HRRR 12-h forecast errors as a function of height and time
relative to TC landfall in Fig. 4 reveals that the temperature
and dewpoint biases have larger magnitudes overall in the two
forecasts than in the RAP analysis. Before landfall, the RAP
analysis is cold biased up to about 10 km (Fig. 4a), consistent
with the overall model temperature errors seen in Fig. 3a.

FIG. 4. (a)–(c) RAP analysis, (d)–(f) RAP 12-h forecast, and (g)–(i) HRRR 12-h forecast mean errors in temperature, dewpoint, and
wind speed, respectively, with respect to days relative to landfall and height. The vertical dashed line at x 5 0 represents the TC landfall
time. The frequency of observation/model pairs (blue lines) is plotted for each bin and model in the right column figures.
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However, this cold bias switches to an unusual low-level warm
bias, from the surface up to about 4 km, starting about 3 days
after landfall. A strong warm bias is also seen in both the RAP
and HRRR 12-h forecasts beginning about three days after
landfall, but in both forecasts this occurs after a weaker warm
bias has already appeared closer to, and even slightly before,
the landfall time (Figs. 4d,g). This bias may be an artifact of
the reduced sample size starting three days after landfall,
where four TCs (Harvey, Irma, Florence, and Barry) had sev-
eral model/observation pairs with considerable (.18C) warm
biases. Similar to the RAP analysis, both the RAP and the
HRRR 12-h forecasts exhibit a cold bias in the days leading up
to landfall, which is retained in the RAP 12-h forecast between
6 and 12 km for 3–4 days after landfall (Fig. 4d).

The moist bias evident in the dewpoint errors of the analy-
sis and both forecasts descend with time, suggesting that the
RAP and HRRR are too slow to dry out the environment as
the TC moves farther inland and conditions become more
typical of the midlatitudes (Figs. 4b,e,h). Wind speed (Fig. 4c)
is weakly underpredicted by the RAP analysis for all times rel-
ative to the TC landfall. The RAP and HRRR 12-h forecasts
slightly overpredict wind speed in the bins from 0 to 0.5 km,
with slightly stronger underpredictions than those of the RAP
analysis above that and across the rest of the time relative to
landfall (Figs. 4f,i).

We also analyze model errors as a function of distance from
the center of the TC, which ranges from 0 to 800 km in this da-
taset. With the exception of the innermost ring within 200 km,
RAP analysis temperature and dewpoint errors (Figs. 5a,b)
are nearly uniform as distance from the TC center increases.
They mimic the RAP analysis mean error profiles for tempera-
ture and dewpoint (Figs. 3a,b), with negative temperature er-
rors from the surface up to about 10 km and dewpoint errors
gradually increasing with height throughout the depth of the
troposphere. The temperature errors are more variable with
height within the innermost 200 km, where cold biases from
roughly 0–4 to 6–8 km create an alternating pattern with the
warm biases, which extend from 4–6 to 8–14 km. We suspect
this pattern of temperature errors is due to both the relative
lack of observations in this region, as well as the complex na-
ture of the interior region of a TC, with quickly evolving in-
tense rainbands, isolated convective cells, and patches of
clearing. The RAP and HRRR 12-h forecast dewpoint errors
behave similarly to those of the RAP analysis, showing little to
no variation with distance (Figs. 5e,h). Both forecasts show
larger overpredictions of temperature within the innermost
200 km. Between 200 and 800 km from the TC center, temper-
ature is generally overpredicted at low levels and underpre-
dicted aloft in the HRRR 12-h forecast (Fig. 5g). In the RAP
12-h forecast, the temperature errors have a slightly larger
magnitude and take on a more layered structure: temperature
is underpredicted at low levels, overpredicted at midlevels,
and underpredicted again above 6 km (Fig. 5d).

For both forecasts and the analysis, the magnitudes of the
temperature errors are smaller at weaker tropical storm inten-
sities and increase as the TC intensity increases (Figs. 6a,d,g).
However, the dewpoint errors are larger at weaker intensities
for both models, with mid- to upper-tropospheric moisture

(above 6 km) more severely overpredicted at intensities weaker
than hurricane strength. At stronger hurricane intensities, mid-
level moisture is occasionally underpredicted (Figs. 6b,e,h).
At intensities greater than 110 kt, however, the frequency of
observations drops off considerably such that results may
be skewed toward individual events (Figs. 6c,f,i). For in-
stance, the atypical warm “streak” in the RAP and HRRR
forecasts at 110–120-kt intensities (Figs. 6a,d) are driven
by a handful of sounding pairs with large warm forecast
errors in Texas and Louisiana during Hurricane Harvey at
0000 UTC 26 August 2017.

With respect to azimuth from the TC center, the RAP anal-
ysis has a relatively weak low-level cold bias in all quadrants
(Fig. 7a). This bias is worse in the southern quadrants (from
908 to 2708) in the forecasts (Figs. 7d,g), but switches to a low-
level warm bias in the northeast and north-northwest direc-
tions. Both forecasts are warm biased from 2 to 5 km on the
east side of the TC (from 08 to 1808). In the analysis and both
forecasts, the upper-level moist bias is stronger on the western
half of the TC (Figs. 7b,e,h). Azimuthal trends in wind speed
errors are less clear, though the HRRR forecast has a greater
tendency to overpredict mid and upper-level wind speeds on
the western half of the TC relative to the RAP analysis and
forecasts (Figs. 7c,f,i).

b. Errors in sounding-derived parameters

We analyze errors in selected sounding-derived parameters
that have been shown in previous studies to display predictive
utility for TCTORs: MLCAPE, 0–6-km shear, and the signifi-
cant tornado parameter (Edwards et al. 2012; Nowotarski
et al. 2021), as well as 0–1-km SRH and 0–3-km lapse rate
(Nowotarski et al. 2021). Sounding-derived parameter errors
are computed by first calculating the values of the parameters
for each observed and model sounding. Then, the observed
value is subtracted from the model value to generate the data-
set of error values, discarding pairs where either value is un-
defined. The statistical significance of the errors is assessed
similarly for the raw variable profiles. In general, errors in
sounding-derived parameters are consistent with those in
their parent variables discussed above.

Surface-based, most-unstable, and mixed-layer CAPE er-
rors are examined first as a function of time relative to land-
fall and TC intensity (Fig. 8). MLCAPE errors (Figs. 8c,f)
tend to be smaller in magnitude, but positive as opposed to
the generally negative biases in SBCAPE and MUCAPE
(Figs. 8a,b,d,e). The HRRR 12-h forecast has larger negative
biases than the RAP analysis and forecast in SBCAPE and
MUCAPE within the region of statistically significant results
(Figs. 8a,b,d,e). This is likely because the HRRR 12-h forecast
has the largest dry bias at the surface (Fig. 3c). Conversely,
the HRRR 12-h forecast outperforms the RAP 12-h forecast
in its prediction of MLCAPE; this could be attributed to the
slightly smaller dewpoint errors in the HRRR 12-h forecast
throughout the typical depth of the mixed layer (Fig. 3c) and
generally smaller temperature errors aloft (Figs. 3a,b).

Absolute CAPE errors tend to decrease with time fol-
lowing landfall (Figs. 8a–c) and increase for stronger TCs
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(Figs. 8d–f). Similar to raw temperature and moisture er-
rors (Figs. 3b,d), the mean absolute error in CAPE is typi-
cally smaller in the RAP analysis than either of the
forecasts, however the RAP analysis is often more biased
than the RAP forecast in SBCAPE and MUCAPE. While
the magnitudes of the MLCAPE mean errors decrease dur-
ing the four days following landfall, the magnitudes of the
SBCAPE and MUCAPE mean errors remain steadier as

time after landfall increases. The mean absolute error de-
creases for all CAPE varieties and all model runs, as the
TC approaches its landfall time and moves inland and
more land-based observations can be assimilated into the
model (Figs. 8a–c). Though biases (when statistically sig-
nificant) become larger (and more erratic) at stronger in-
tensities, this may be in part due to smaller sample sizes at
intensities over 110 kt.

FIG. 5. As in Fig. 4, but plotted relative to distance from the TC center. Columns shown in black have a sample size of fewer than four
sounding pairs.
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FIG. 6. As in Fig. 4, but plotted relative to TC intensity. The vertical dashed line indicates the threshold for hurricane
intensity.
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FIG. 7. As in Fig. 4, but plotted relative to azimuth from TC center. The vertical dashed lines separate each north-relative
quadrant.
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MLCAPE errors are plotted as a function of distance and azi-
muth relative to the TC center on north-relative polar plots to
examine the TC-relative spatial distribution of the errors. Over-
predictions of MLCAPE by the RAP 12-h forecast (Fig. 9b) are
significant in the entire northern sector of the TC, and these er-
rors range from 100 to over 300 J kg21. The RAP analysis over-
predicts MLCAPE nearly everywhere within the 800-km radius
(Fig. 9a). These overpredictions are significant east of the center
in a sector from 458 to 1358, which tends to be where most
TCTORs occur (Edwards 2012). The HRRR MLCAPE errors
are generally weaker and less significant in most regions relative
to the TC center (Fig. 9c).

Overall, the signs of the SBCAPE, MUCAPE, and MLCAPE
biases examined parallel those of Evans et al. (2018) in the conti-
nental convective environments they analyzed. In their study, the
RAP and HRRR forecasts as well as the RAP analysis had sur-
face dry biases, which likely contributed to the slight low biases
they observed in the SBCAPE and MUCAPE. MLCAPE was
biased high in their study as well, likely due to the moist biases
present just above the surface.

Lapse rates (LRs) are often used in ingredients-based tor-
nado forecasting as a measure of static stability supplement-
ing the integrated measure of lifted parcel buoyancy provided
by CAPE. Because errors are the model value minus the ob-
served value, a positive lapse rate error means that the layer
is more unstable in the model than in the observations, while
a negative lapse rate error corresponds to a stable bias in the
model. Investigation of the lapse rate errors as a function of

time relative to TC landfall shows a decreasing trend in
0–1-km lapse rate errors for both forecasts and the analysis,
with underpredictions reaching magnitudes of 0.58–18C km21

after two days postlandfall (Fig. 10a). The 0–3-km lapse rate er-
rors (Fig. 10b) tend to be negative, with slight decreases after
two days postlandfall and smaller magnitudes than the 0–1-km
lapse rates. Most of the significant errors for both the 0–1 and
0–3-km layers occur in the period beginning two days before
landfall. This significant stable bias in the models in layers start-
ing at ground level is consistent with the CAPE errors, because
SBCAPE and MUCAPE were both underpredicted by the
models during this period relative to TC landfall (Figs. 8a,b).
The overarching stable biases in the 0–1 and 0–3-km lapse rates
are consistent with the mean temperature error profiles in
Fig. 3a and driven largely by cool biases at the surface for
0–1-km lapse rates, but also a warm bias at 3 km for the 0–3-km
lapse rates. The magnitudes of both the 0–1 and 0–3-km lapse
rate biases worsen as time after landfall increases and the TC
moves farther inland. Mean absolute errors in both lapse rates
are generally smaller in the analysis than the forecasts, and they
are consistent across times and intensities.

When examined as a function of TC intensity (Fig. 10d),
the 0–3-km lapse rate errors are generally underpredictions of
similar magnitude (,0.58C km21) to the errors as a function
of time relative to landfall regardless of intensity. The 0–1-km
lapse rate errors are also negative as a function of intensity
(at least when statistically significant, Fig. 10c), though with
larger magnitudes (up to 18C km21) and more variability

FIG. 8. (a)–(c) SBCAPE, MUCAPE, and MLCAPE mean errors and mean absolute errors (J kg21) plotted as functions of time relative
to landfall for the RAP analysis, RAP 12-h forecast, and HRRR 12-h forecast. The vertical line at x 5 0 represents the time of the TC
landfall. Solid dots are placed along the mean error lines at the midpoint of each bin in which the errors are significant at the 95% confi-
dence level. (d)–(f) As in (a)–(c), but plotted with respect to TC intensity. The vertical line represents the hurricane intensity threshold.
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across the range of intensities than the 0–3-km lapse rate errors.
Few lapse rate errors in either of the forecasts or the analysis
are statistically significant at intensities above 100 kt, in either
the 0–1 or 0–3-km layer. Moreover, the 0–1-km lapse rate errors
are generally negative at most distances and azimuths from
908 to 3608 (Figs. 9d–f), which corresponds to a stable bias.
However, the RAP and HRRR 12-h forecasts exhibit unstable,
but not statistically significant 0–1-km lapse rate biases in the
northeast quadrant, consistent with the atypical surface warm
bias in that quadrant (Figs. 7d,g).

Shifting to kinematic sounding-derived parameters, bulk
wind difference (BWD, representing vertical wind shear) in
the layers 0–1, 0–3, and 0–6 km is generally underpredicted as
a function of intensity, local time of day, time relative to land-
fall, and location relative to the TC center for all model runs
examined. These underpredictions align with the shear errors
expected to result from the wind error profiles (Fig. 3c) and
wind error heat maps (Figs. 4–8c,f,i) for each of the forecasts
and the analysis, which show generally overpredicted winds at
the surface and underpredicted winds aloft. BWD in the layer
from 0 to 1 km is underpredicted by 1.5–3 kt for both the fore-
casts and the RAP analysis before TC landfall (Fig. 11a),
though the magnitude of this error decreases with time during
the first three days after landfall. This is physically consistent
with the behavior of the 0–1-km BWD errors as a function of
intensity (Fig. 11b); the largest underpredictions occur for
stronger TCs and the magnitude of the underpredictions de-
creases as the TC weakens. The 0–6-km BWD errors exhibit
similar magnitudes to the 0–1-km BWD errors, but they do not

notably decrease as time after landfall decreases (Fig. 11c), nor
as TC intensity weakens (Fig. 11d). Absolute BWD error
magnitudes are 3–6 kt for both the 0–1- and 0–6-km layers,
which is about 15%–33% of the average BWD values of
around 18–19 kt observed in those layers (unlike typical
midlatitude severe storms environments, the mean 0–1- and
0–6-km BWD are of a similar magnitude in TC envelopes).

The RAP analysis significantly underpredicts 0–1-km
BWD in all but two range–azimuth spatial bins between
200 and 800 km from the TC center (Fig. 12a). Within the same
range ring in the forecasts, significant underprediction of 0–1-km
BWD is confined to smaller continuous swaths: across the entire
northeast half of the TC from 3158 to 1358 in the RAP 12-h fore-
cast (Fig. 12b) and within a smaller sector from 3158 to 908 in
the HRRR 12-h forecast (Fig. 12c). The RAP analysis and fore-
cast continue to significantly underpredict 0–6-km BWD in most
of the eastern half of the TC (Figs. 13a,b). The HRRR forecast
0–6-km BWD errors are also negative across most of the do-
main, but less statistically significant (Fig. 13c).

McCaul (1991) showed that the strongest shear and largest
SRH values tend to occur in the right-front quadrant of the TC,
whose characteristics tend to align with those of the northeast
quadrant in the north-relative reference frame (Schultz and Cecil
2009). In the north-relative polar plots created for BWD errors
(Figs. 12a–c), the largest continuous swaths of significant errors
tend to include or center around the northeast quadrant, where
mean observed values of shear are strongest and TCTORs are
the most common relative to the TC center (Edwards 2012).
Overall, 0–1-km SRH tends to be underpredicted by models in

FIG. 9. MLCAPE mean errors (J kg21) plotted as a function of distance and azimuth relative to the TC center for (a) the RAP analysis,
(b) the RAP 12-h forecast, and (c) the HRRR 12-h forecast. (d)–(f) As in (a)–(c), but 0–1-km lapse rate (LR) errors are plotted. Bins in
which the errors are not statistically significant at the 95% confidence level are hatched.
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this quadrant (outside of 200-km range), but this difference is sta-
tistically significant in fewer spatial bins than low-level shear
(Figs. 12d–f).

Values of selected thermodynamic and kinematic variables
are used to calculate the STP, which was shown by Nowotarski
et al. (2021) to discriminate between tornadic and nontornadic
cells within Hurricane Harvey. Their study used the fixed-layer
STP, which is computed using the surface-based lifting conden-
sation level, or SBLCL, along with SBCAPE, 0–1-km SRH,
and 0–6-km BWD. The CINH-adjusted STP depends on the
mixed-layer thermodynamic quantities MLLCL, MLCAPE,

and MLCINH, in addition to values of effective-layer SRH and
effective-layer shear.

Fixed-layer STP is significantly underpredicted in a small
sector to the east-northeast of the TC center by the RAP 12-h
forecast (Fig. 13b). These underpredictions have the largest
magnitude within 200–400 km of the TC center and decrease
outside of that range. Fixed-layer STP is also significantly
underpredicted on the east side of the TC center by the
HRRR 12-h forecast through a narrow ring from 458 to 1808
and 200–400 km (Fig. 13c), and by the RAP analysis in a small
sector just south of east from 200 to 600 km (Fig. 13a). These

FIG. 10. (a) 0–1-km and (b) 0–3-km lapse rate mean errors and mean absolute errors for the RAP analysis, RAP
12-h forecast, and HRRR 12-h forecast (8C km21), plotted as functions of time relative to landfall. The vertical line at
x 5 0 represents the time of the TC landfall. (c),(d) As in (a) and (b), but errors are plotted relative to TC intensity
and the vertical line represents the threshold for hurricane intensity. Solid dots are placed along the mean error lines
at the midpoint of each bin in which the errors are significant at the 95% confidence level.
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results are consistent with the overlapping negative errors al-
ready seen in SBCAPE, 0–6-km BWD, and 0–1-km SRH on
the east side of the TC center, while SBLCL errors are gener-
ally small given the competing effects of the surface cool and
dry bias on the LCL (Fig. 3). Notably, this region of STP
underprediction also overlaps with the region where TCTORs
most tend to occur. Fixed-layer STP errors remain generally
(but often insignificantly) negative at most times relative to
TC landfall (Fig. 14b) and are only significant and slightly
negative for weaker TCs (Fig. 14a). Largely because of the
use of ML thermodynamic variables, which are less sensitive
to the localized surface temperature and moisture biases of

the models (e.g., MLCAPE biases are positive; Figs. 8 and 9)
while effective-layer SRH and shear values are still biased
negative, CINH-adjusted STP errors tend to be smaller and
not statistically significant.

5. Summary and conclusions

This study explores model errors in the RAP analysis and
RAP and HRRR 12-h forecasts within the TC envelope up to
800 km from the center. Up to 1730 sounding pairs are used
in the analysis, from 13 TCs that made landfall along the coast
of the contiguous United States during the 2017, 2018, and

FIG. 11. 0–1- and 0–6-km bulk wind difference mean errors and mean absolute errors (kt) and plotted as a function
of (a),(c) time relative to landfall (days) and (b),(d) TC intensity (kt) for the RAP analysis, RAP 12-h forecast, and
HRRR 12-h forecast. Solid dots are placed along the mean error lines at the midpoint of each bin in which the errors
are significant at the 95% confidence level.
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2019 Atlantic hurricane seasons. First, mean error profiles are
created to investigate the model representation of tempera-
ture, dewpoint, and wind throughout the depth of the tropo-
sphere. Then, we explore how these model errors vary with

height as functions of variables related to TCs such as time rel-
ative to landfall, intensity, and distance/azimuth from the cen-
ter. Finally, model errors in sounding-derived parameters are
examined, paying particular attention to variables previously

FIG. 12. As in Fig. 9, but for (a)–(c) 0–1-km BWD errors and (d)–(f) 0–1-km SRH.

FIG. 13. As in Fig. 9, but for (a)–(c) 0–6-km BWD and (d)–(f) fixed-layer STP.
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identified as useful for TCTOR forecasting. Results are also
compared and contrasted with the RAP and HRRR model er-
rors found by Evans et al. (2018) in their examination of conti-
nental convective environments.

Our conclusions in terms of the main research questions
motivating this study are as follows:

1) What are the height-dependent model biases in tempera-
ture, dewpoint, and winds in the RAP analysis, and 12-h
RAP and HRRR forecasts relative to radiosonde obser-
vations within a TC envelope?
Surface cool biases are evident in the mean error profiles,
which often leads the models to be stable-biased in sur-
face-based parameters used to assess static stability and
parcel buoyancy. The temperature errors from 0 to 5 km
in the RAP and HRRR 12-h forecasts are not consistent
with the results of Evans et al. (2018), who found persis-
tent warm biases within that layer in continental envi-
ronments. Dewpoint errors have larger magnitudes and
standard deviations than the temperature errors, and a
pronounced moist bias worsens with height for both the
forecasts and the analysis. This moist bias was also evi-
dent in the continental environments analyzed by Evans
et al. (2018). However, the magnitude of the moist bias
from 0 to 5 km tends to be smaller in the TC environ-
ments analyzed in this study, suggesting that models
predict moisture more accurately within TC envelopes.

Wind speeds are overpredicted in a shallow layer near
the surface and then underpredicted throughout the rest
of the depth of the profile, which leads to underpredic-
tions of vertical wind shear in surface-based layers.
Overall, mean absolute errors of temperature, dewpoint,
and wind speed in both the 12-h forecasts exceed those
in the RAP analysis throughout the profile.

2) How does model performance vary as a function of dis-
tance/azimuth from the TC center, TC intensity, and time
relative to TC landfall?
Low-level temperature errors tend to transition from cool
to warm biases as time from landfall increases while a
moist bias descends with time from landfall, suggesting
both the RAP and HRRR may be slow to dry out the
TC envelope as it moves inland and weakens. No nota-
ble trends in temperature or dewpoint errors exist as
distance from the TC center increases, but low-level
warm biases occur in the north-northwest and northeast
sectors of TCs, while low-level cool biases tend to occur
on the southern half of the TC envelope. Upper-level
moist biases are amplified at weaker TC intensities and
in the western half of TCs. Wind speed errors tend to be
consistent with their average vertical profiles at most TC
intensities and times after landfall, but the HRRR fore-
casts tend to overpredict mid and upper-level wind
speeds on the western half of the TC compared to the
RAP.

FIG. 14. Fixed-layer STP mean errors and mean absolute errors plotted as a function of (a) TC intensity and
(b) time relative to landfall. Solid dots are placed along the line at the midpoint of each bin in which the errors
are significant at the 95% confidence level.
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3) How do model biases translate to errors in sounding-
derived parameters specifically related to TCTOR fore-
casting?
SBCAPE and MUCAPE are generally underpredicted
across all model runs and as a function of time relative to
landfall, intensity, and distance and azimuth relative to
the TC center, while MLCAPE is generally overpre-
dicted. These broad trends in model predictions of CAPE
align with what could be expected from a cool and dry
bias at the surface that transitions to a weaker cool bias
and moist bias in the mixed layer just above the surface.
The signs of the biases in SBCAPE, MUCAPE, and
MLCAPE are also consistent with the findings of Evans
et al. (2018). Stable biases also exist in the lapse rate er-
rors, with more variability and larger error magnitudes for
the lapse rates calculated from 0 to 1 km than those calcu-
lated for the 0–3-km layer.
The 0–1-, 0–3-, and 0–6-km bulk wind difference (BWD) are
generally underpredicted for all model runs examined, con-
sistent with overpredictions of surface wind speed in the
forecast and to some extent underpredictions of winds aloft.
The underpredictions of 0–1-km BWD decrease after land-
fall and at weaker intensities, while the underpredictions of
0–3- and 0–6-km BWD remain steadier as a function of time
relative to landfall and intensity. Likewise, SRH tends to be
underpredicted, although with fewer significant results
across the model runs and TC-related variables. Fixed-
layer STP is slightly underpredicted, especially in areas
where TCTORs are most common, while trends are less
clear in the CINH-adjusted STP.

The frequent underprediction of surface-based measures of
instability and shear by the RAP and HRRR models is impor-
tant for forecasters to note. The underpredictions of these
variables in the model forecasts and analysis have the poten-
tial to lead to an underestimation of the tornado threat during
landfalling TCs compared to mixed-layer values. Several of
the variables that are significantly over- or underpredicted
within sectors of the TC have been identified as favorable for
TCTOR production. MLCAPE is significantly overpredicted
by 100–200 J kg21 within a sector on the east side of the TC in
the RAP analysis, and by 200–300 J kg21 throughout the
northern half of the TC in the RAP 12-h forecast. The
0–3-km BWD values are significantly underpredicted by
2–5 kt in the RAP 12-h forecast throughout the eastern half
of the TC, outside of 200 km from the center. The 0–6-km
BWD is also significantly underpredicted in the RAP 12-h
forecast, by the same magnitude within the majority of the
eastern half of the TC. Finally, the mid and upper-level mois-
ture biases shown here may lead to significant biases in en-
trainment CAPE, which has been shown to be relevant within
TCs (Molinari et al. 2012) and a skillful predictor of TCTORs
(Sueki and Niino 2016).

Our methodology is limited in a few ways that may affect
the results. First, we do not filter for the potential for sound-
ing pairs that may be heavily influenced by local effects of
convection, since all of these observations occur within the
TC envelope. Based on analysis of saturated layers within the

soundings, we estimate less than 10% of all soundings occur
within convectively active regions. We also assume that the
radiosonde observations match vertical model gridpoint pro-
files, ignoring potential effects of horizontal advection of ra-
diosondes. This choice was made to be consistent with Evans
et al. (2018), and because RAP and HRRR data are only
available hourly, an accurate spatiotemporal interpolation
would be difficult to achieve.

Sample size is another potential limitation of these results.
While we have analyzed ;1500 sounding pairs, these occur
over three years and 13 TCs, such that results may vary over a
longer period. Within these results, we also caution the reader
that some portions of the parameter space with fewer obser-
vations may lead to results that are overly influenced by one
model analysis/forecast period or TC (e.g., results for TC in-
tensities over 110 kt, within 200 km of the TC center, or sev-
eral days after landfall). Moreover, when sample size is
limited there may be notable covariance between aspects of
the parameter space. For example, observations in southern
TC-relative azimuths tend to be more likely when TCs are
well inland and generally weaker.

Finally, model errors may not be consistent for different
versions of the RAP/HRRR model. Model physics parame-
terizations, numerics, and data assimilation are updated in
ways that may affect low-level errors, in particular (e.g., PBL
and land surface schemes). Both models were updated
roughly halfway through our analysis period. Supplemental
Fig. 1 shows changes in mean error profiles for the RAP3 ver-
sus RAP4 and HRRR2 versus HRRR3 periods. In general,
newer model versions have a cooler temperature bias (though
the magnitude of this bias is similar for both model versions),
a slight reduction in the upper-level moisture bias, and little
systematic changes in the wind speed bias. However, it is un-
clear how many of these differences are due to model changes
compared to differences in the nature of the TCs within each
subset of events. In December 2020, the RAP and HRRR
were updated to versions 4 and 5, respectively, such that the
errors presented here may not fully agree with current or fu-
ture operational analyses or forecasts.

While this study presents a broad overview of RAP and
HRRR errors within TC envelopes that may be particularly
relevant for TCTOR forecasting, considerable future work in
this area is needed. Additional forecasting insights could be
gleaned by investigating the errors in the raw variables and
sounding-derived parameters at longer model lead times. Ex-
amining the errors in different models such as the Hurricane
Weather Research and Forecasting model (HWRF), the
North American Mesoscale Forecast System (NAM), and the
Global Forecast System (GFS) would be beneficial since fore-
casters often compare forecasts from a variety of models
within the complex TC envelope and regional and global
models provide estimates of potential tornado environments
within TCs at longer lead times. Also, the dataset could be ex-
panded to include TCs from more Atlantic hurricane seasons
and more recent versions of the RAP/HRRR to address limi-
tations of this study discussed above. Finally, work is needed
to determine the physical mechanisms and flaws in model ini-
tial conditions or parameterizations leading to the errors
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presented here in order to reduce these errors in future ver-
sions of operational models.
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